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Abstract

We develop a theory of biased extensive measurement which allows us to prove the existence of a ratio-scale without transitivity of

indifference and with a property of homothetic invariance weaker than independence. These representations, which cover the cases of

interval orders and of semiorders, reveal a unique biasing function smaller or equal to 1 that distorts extensive measurement and explains

departures from its standard axioms. We interpret this biasing function as characterizing the qualitative influence of the underlying

measurement process and we show that it induces a proportional indifference threshold.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This paper shows that extensive measurement is possible
even when a distortion of the measurement process causes
a lack of discrimination (intransitive indifference) and a
lack of consistency (violation of independence). Moreover,
such a distortion can be characterized with a unique
biasing function. In this manner, and in conditions more
general than theories of extensive measurement, our theory
of biased extensive measurement provides both a measure-
ment of objects and a measurement of the measuring
process.

Theories of extensive measurement are important for the
mathematical foundations of science because they establish
the conditions for a fully quantitative measurement of
attributes such as, for instance, mass, length or time
duration. Generally speaking, they can be formulated as
axioms about a non-empty ordering � on a set A (of
objects x; y; z . . . 2 A) and a binary (commutative, associa-
tive) operation � on A that permit the construction of a
e front matter r 2006 Elsevier Inc. All rights reserved.
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ratio-scale j : A ! R40 verifying

x � y () jðxÞ4jðyÞ, (i)

jðx � yÞ ¼ jðxÞ þ jðyÞ. (ii)

Property (i) reflects that the scale j associates a number
with each object in such a way that the empirical relation �
among objects is represented by the numerical relation 4.
Property (ii) reflects the often taken-for-granted additive
property that ‘‘the value of x and y combined together
equals the value of x plus the value of y’’. When property
(ii) is verified, we say that the scale is additive and that the
measurement is extensive. Another critical aspect of
extensive measurement is that j is a ratio-scale. This
means that, if another scale j0 also verifies properties (i)
and (ii), then there exists a positive number l such that
j0 ¼ lj. We say that j is unique up to a positive scaling
transformation or up to multiplication by a positive scalar.
This uniqueness condition is important because intuitive
statements such that ‘‘the value of x is twice the value of y’’
and ‘‘the value of x minus the value of y is greater than the
value of z minus the value of t’’ are meaningful: if such
statements are true for a scale j verifying properties (i) and
(ii), then they are also true for any other scale j0 verifying
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1Note that this is not the only possible interpretation nor the only

possible formalization of a biased balance.
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properties (i) and (ii). More generally, we say that a ratio-
scale preserves the comparison of ratios and of differences.
Finally, ratio-scales are also important because they allow
for all types of statistical measures (mean, standard
deviation, coefficient of variation, etc.) and always imply
an absolute zero (see Stevens, 1946 for a seminal discussion
on the theory of scales of measurement. See Krantz, Luce,
Suppes, & Tversky, 1971, Chapter 3 and Roberts, 1979,
Section 3.2 for the foundations of extensive measurement).

Two groups of axioms are crucial to these theories.
Firstly, the ordering must be asymmetric: x � y) y - x,
and negatively transitive: ðx - y and y - zÞ ) x - z.
These properties imply that the ordering is transitive: ðx �
y and y � zÞ ) x � z and that the associated indifference
relation � defined by x � y3 ðx - y and y - xÞ is also
transitive. Secondly, the combination of the ordering and
the operation must verify a form of consistency called
monotonicity, translation-invariance, or independence:
x � y3 ðx � z � y � z for all z 2 AÞ. Both transitivity of
indifference and independence are necessary conditions for
showing the existence of a ratio-scale verifying (i) and (ii)
above (because these conditions hold for the triple
hR;4;þi). When the measurement process is distorted or
biased, however, indifference may not be transitive. For
instance, we may not be able to distinguish between object
x and object x � y when y is sufficiently ‘‘small’’. Indeed, it
has long been recognized that practical measurement is
always faced by some lack of discrimination. Second, we
may not observe that x � y whenever x � z � y � z, reflect-
ing some lack of consistency. A typical example in the
social sciences is the decreasing marginal value for money.
According to the theories of extensive measurement
presented above, the existence of an additive ratio-scale
cannot be proven when we observe a violation of transitive
indifference or of independence. This may haveconsider-
ably restricted the applications of extensive measurement,
in particular in the psychological sciences.

With our theory of biased extensive measurement, we
aim to generalize the conditions under which extensive
measurement is possible. These theories can be formulated
as a collection of axioms about a non-empty ordering �
and a binary (commutative, associative) operation � on A

that permit the construction of a ratio-scale j : A ! R40

and a unique function sðx; yÞ : A� A ! R verifying

x � y () sðx; yÞjðxÞ4jðyÞ, (i0)

jðmxÞ ¼ mjðxÞ, (ii0)

sðmx;myÞ ¼ sðx; yÞ, (iii0)

where mx ¼ x � � � � � x (m times, m 2 N40). The scale j
provides a ratio-scale measure of each object or stimuli and
increases linearly with the quantity of a given object
(property ðii0Þ). The ‘‘biasing function’’ s provides a
measure of the distortion or bias of the measurement
process and remains constant when the quantity of the
objects increases (property ðiii0Þ). A necessary condition for
the existence of a scale j verifying properties ði0Þ, ðii0Þ and
ðiii0Þ is the property of scale-invariance or homotheticity x �

y3mx � my for all m 2 N40. Indeed, this condition will
be the key structural property upon which our algebraic
approach derives its results (for a study of this property on
a topological setting, see Candeal & Indurain, 1995).
Because of the presence of the biasing function in ði0Þ,
transitivity of indifference and independence are no longer
necessary conditions for these representations. More
precisely, this paper shows that, whenever � is an interval
order (an asymmetric ordering for which ðx � y and

y h z and z � tÞ ) x � t), there exists a unique function
gðxÞ : A ! �0; 1� such that sðx; yÞ ¼ gðxÞgðyÞ. Further,
there exists a unique a 2�0; 1� such that sðx; yÞ ¼ a
whenever � is a semiorder (an interval order for which
x � y � z) ðt � z or x � tÞ). Finally, we show that this
ratio-scale measurement is extensive, i.e. the scale is
additive and verifies property (ii) above (which is stronger
than property ðii0Þ), whenever � is a semiorder that verifies
the pseudo-independence condition

ðx � y; z � tÞ ) x � z � y � t;

ðx h y; z h tÞ ) x � z h y � t:

(

In this case, a balance that is not necessarily equally
armed provides an enlightening illustration. The statement
‘‘x � y’’ reflects that the balance tilts towards x indepen-
dently of the arm on which x is positioned (which means
that the balance tilts towards x when it is positioned on the
shorter arm) and the statement ‘‘x � y’’ is interpreted as
the positioning of objects x and y in the same pan of the
balance. The scale j measures the mass of the objects and
the constant bias a measures the ratio of the length of the
shorter arm over the length of the bigger arm. Because the
equally armed balance has long been a typical illustration
of extensive measurement, the biased balance helps to
capture the specificity of biased extensive measurement and
of its axioms. For instance, Fig. 1 illustrates the violation
of transitive indifference whereas Fig. 2 illustrates the
violation of independence.1

The biased balance indeed suggested to us that the
homotheticity condition would adequately replace the
traditional independence condition. It is illustrated in
Fig. 3.
As stated above, the importance of intransitivity of

indifference has long been recognized as a (nearly)
inescapable feature of experimental observation and a
problematic issue for the mathematical foundations of
science (e.g. Poincaré, 1903). Luce (1956) introduced the
concept of semiorders to capture the idea that individuals
may lack discrimination. In a seminal paper, Scott and
Suppes (1958) have proved that finite semiorders can be
represented by a function and a constant additive thresh-
old, naturally interpreted as a threshold of indifference
(see also Suppes, Krantz, Luce, & Tversky, 1989). A
slightly more general notion is the one of interval orders
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Fig. 3. Homothetic or scale-invariance.

Fig. 2. Violation of independence with a biased balance.

Fig. 1. Violation of transitive indifference with a biased balance.
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introduced by Fishburn (1973). Several researchers have
identified conditions to guarantee the representation of
such ordering relations by two functions (e.g. Fishburn,
1973, 1985; Bridges, 1986; Chateauneuf, 1987; Oloriz,
Candeal, & Indurain, 1998; Bosi, 2002; Bosi, Candeal,
Induráin, & Zudaire, 2005; see also Abbas, 1995). These
functions provide for an interval, i.e. a lower and upper
value for the measurement of each object, hence their name
‘‘interval order’’.

The representations quoted above do not address the
importance of the uniqueness conditions. They do not
provide a genuine measurement of objects, either in the
sense of a rank ordering (they should prove the existence of
a scale unique up to monotonic transformation), or in the
sense of an interval scale (they should prove the existence
of a scale unique up to positive affine transformation) or in
the sense of a ratio-scale like in extensive measurement. In
contrast, our theory of biased extensive measurement
proves the existence of a ratio-scale that genuinely measure
objects even in presence of intransitive indifference, while
also providing for a measurement of the distortion of the
measurement process. Also, our algebraic approach avoids
any of the topological or finiteness assumptions that these
representations assume.
Biased extensive measurement has been first introduced

in Le Menestrel and Lemaire (2004), where we treat the
case of a positive homogeneous substance such as mass in
the natural sciences or money in the social sciences. In that
restrictive case, we were able to prove both the existence of
a ratio-scale and of a unique constant multiplicative bias
without transitive indifference and without independence.
In Lemaire and Le Menestrel (2006), we provide an
abstract algebraic treatment of ‘‘homothetic interval
orders’’ and generalize these intermediary results to non-
homogeneous structures. Then, the biasing function is not
necessarily constant but may vary depending on the objects
at hand. In the present paper, we apply our mathematical
results to the theory of measurement. We repeat our main
results while introducing a supplementary Archimedean
axiom that leaves out the consideration of objects that
would be assigned a null measurement. From the purely
mathematical point of view, this introduces a restriction
rather than a novelty but it simplifies the formulations of
the theorems and of the proofs. In order to show how this
approach allows for the measurement of the distortion of
the measurement process, we introduce the notions of
indifference sets, of upper and lower indifference thresh-
olds, of tight indifference, of tight upper and lower
indifference thresholds, and of progressive refinement of
indifference. We illustrate these notions with examples and
graphical illustrations.
The rest of this paper is structured as follows. After some

preliminaries and a key lemma in Section 2, we first show in
Section 3 the existence of a ratio-scale when the ordering
relation is a homothetic weak order. In Section 4, we relax
the assumption of transitivity of indifference and introduce
the biased representation of homothetic interval orders. In
Section 5 we recover (in our homothetic context) the more
familiar representation of interval orders with two func-
tions, albeit ratio-scales in our case. This leads to a
progressive approximation of the measurement of objects.
In Section 6, we deal with homothetic semiorders and show
that they correspond to the case where the threshold of
indifference is a constant proportion of the measurement
of objects (Weber’s law). In Section 7, we consider the case
of homothetic semiorders that have an additive representa-
tion, i.e. that satisfy the traditional additive property of
extensive measurement (condition (ii) above). We conclude
in Section 8.

2. Preliminaries and a key lemma

Let A denote a non-empty set of objects, x; y; z; t . . . the
elements of A, andN� the set of positive integers. Our basic
algebraic structure consists of the set A together with a
map N� � A ! A; ðm; xÞ 7�!mx such that ðmm0Þx ¼

mðm0xÞ and 1x ¼ x. Such a structure is called a N�-set.
In this manner, objects can be replicated with themselves
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and we interpret mx as the quantity m of object x. Note
that the results we obtain for N�-sets are true (mutatis
mutandis) for R�þ-sets, where R�þ denotes the set of
positive real numbers. Hence, they are also true for a cone
A ¼ ðR�þÞ

L of any dimension L, which is the structure that
we use in our examples.

We model the observation of the empirical phenomenon
at hand by a binary relation � on A. The indifference
relation on A is noted � and is defined by x � y3x - y

and y - x. We note h the relation on A defined by
x h y3x � y or x � y.

For all x; y; z; t 2 A, the relation � is said to be asymmetric

if x � y) y - x; transitive if x � y � z) x � z, strongly

transitive if (x � y and y h z and z � t) ) x � t and
negatively transitive if x - y - z) x - z. Note that the
relation � is asymmetric if and only if x - y3 y h x. The
relation � is called an interval order if it is asymmetric and
strongly transitive; a semiorder if it is an interval order and
we have x � y � z) ðt � z or x � tÞ; a weak order if it is
asymmetric and negatively transitive. So we have the
implications

weak order) semiorder) interval order.

Note that indifference may fail to be transitive for both an
interval order and a semiorder. Also, note that interval
orders can been generalized with the notion of biorders (e.g.
Doignon, Ducamp, & Falmagne, 1984).

We now introduce the following axioms for a relation �
on a N�-set A ðx; y; z; t 2 A;m;m0;m00 2 N�Þ:

Axiom 1 (homotheticity). 8ðx; y;mÞ we have
x � y3mx � my;

Axiom 2 (strong separability). 8ðx; y; zÞ such that x �

y; 9ðm;m0;m00Þ such that mx � m0z;m0z h m00z;m00z � my;

Axiom 3 (super-Archimedean).2 8ðx; yÞ such that x � y,
9ðm;m0Þ such that mom0 and mx � m0y;

Axiom 4 (positivity). 8ðx; y;m;m0Þ such that m4m0, we
have x � y) mx � m0y;

Axiom 5 (Archimedean).3 8ðx; yÞ, 9m such that mx � y.

We call � a homothetic structure if it verifies Axioms 1–4.
A homothetic structure is called a homothetic interval order,
a homothetic semiorder and a homothetic weak order if � is,
respectively, an interval order, a semiorder and a weak
order. In this paper, we will further suppose that a
homothetic structure is Archimedean, i.e. that Axiom 5
always holds, excluding the objects that would be assigned
2Note that, in Lemaire and Le Menestrel (2006) and Le Menestrel and

Lemaire (2004, 2006), we use the terminology ‘‘Archimedean’’ for Axiom

3. The terminology used in the present paper has been suggested by the

editor and seems more appropriate (see in particular Candeal, De Miguel,

& Indurain, 1997, De Miguel, Candeal, & Indurain, 1996).
3For the terminology, Cf. note 2 above.
a null utility.4 This is the axiom which is omitted in
Lemaire and Le Menestrel (2006).
We now introduce the basic tools of our algebraic

approach.
Let A be a homothetic structure and define the (non-

empty) subsets of Q�þ, where Q
�
þ denotes the set of positive

rational numbers:

Qx;y ¼ fmn�1 : m; n 2 N�;mx h nyg,

Px;y ¼ fmn�1 : m; n 2 N�;mx � nyg.

Let rx;y ¼ infRX0
Qx;y and sx;y ¼ infRX0

Px;y. For non-
empty subsets U;V 	 R�, let U�1 ¼ fu�1; u 2 Ug and
UV ¼ fuv; u 2 U; v 2Vg. If � is asymmetric, the Q�þ is
partitioned as Q�þ ¼ Qx;y [P

�1
y;x ¼ Q�1y;x [Px;y with

Qx;y \P
�1
y;x ¼ Q�1y;x \Px;y ¼+.

We now prove the following useful lemma.

Lemma 1. If � is an interval order on a homothetic structure,
then for all x; y; a 2 A we have Px;y ¼ Q4sx;y with sx;y 4 0;
Qy;x ¼ QXry;x with ry;x ¼ s�1x;y, and Px;y ¼ Px;aQa;aPa;y.

Proof. Let x; y 2 A. If q 2 Px;y, we have (Axiom 4)
QXq 	 Px;y. If q 2 Q4sx;y , then by definition of sx;y, there
exists q0 2 Px;y such that sx;ypq0o q. Hence, we have
Q4sx;y 	 Px;y. From Axiom 2, we have sx;y 2 Q)

sx;yePx;y. Thus, Px;y ¼ Q4sx;y . Since Q�1y;x ¼ Q�þnPx;y is
non-empty (Axiom 5), we have sx;y 4 0. Since Q�1y;x ¼

Q�þnP
�1
x;y ¼�0; sx;y�, we have Qy;x ¼ QXs�1x;y

and ry;x ¼ s�1x;y.
From strong transitivity of � and Axiom 1, we have the
inclusion Px;aQa;aPa;y 	 Px;y; and from Axioms 2 and 1,
we have the inclusion Px;y 	 Px;aQa;aPa;y. &

3. Homothetic weak orders

Suppose that the binary relation � is a weak order, i.e.
that there is no lack of discrimination in the measurement
process. In our homothetic setting, we show that we can
prove the existence of a ratio-scale. Our situation is here a
little bit different than the traditional extensive measure-
ment on extensive structure in the sense that no concatena-
tion operation beyond simple replication is assumed among
objects. As a result, we obtain a ratio scale j that does not
necessarily verify additivity, as it will be shown in the
following example. Note also that a similar result appeared
as Theorem 9 of Krantz et al. (1971, p. 104). The
formulation above has the interest of building directly on
the homotheticity condition, allowing more simplicity in
the proof and providing the necessary generality for the
subsequent results without transitive indifference.
homogeneous subsets (a set S is called homogeneous if for all x; y 2 S,

there exists ðm; nÞ 2 N� �N� such that mx ¼ ny, see Le Menestrel &

Lemaire, 2004) called homogeneous classes in A. When Axiom 5 holds,

each homogeneous class C in A is an infinite denumerable set (in

particular, C cannot be a finite cycle group). Moreover, Axiom 5 forces the

map j of Theorems 1– 6 below to verify the following condition: for each

homogeneous class C in A, the restriction jjC is an injective map.
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Theorem 1. Let A be a non-empty N�-set endowed with an

Archimedean binary relation �. The two following conditions

are equivalent ðx; y 2 A;m 2 N�Þ:
25
(i)
20

15

2a

3a

�15
There exists a function j : A ! R�þ such that 8ðx; y;mÞ
we have

x � y 3 jðxÞ4jðyÞ;

jðmxÞ ¼ mjðxÞ:

(

10

�10
(ii)
 The relation � is a homothetic weak order.
5
a

�5
Moreover, if � is a homothetic weak order, the function j

0
0 5 10 15 20 25 30 35

Fig. 4. Three equally-spaced isocontours of a homothetic weak order.
of (i) is unique up to multiplication by a positive number, i.e.

it is a ratio scale.

Proof. Implication ðiÞ ) ðiiÞ is clear. Suppose � is a
homothetic weak order. From Lemma 1, we have
x � y3 sx;y o 1. Let us prove that sx;x ¼ 1 ¼ rx;x. Suppose
that sx;xa1. Then, rx;x o 1. Therefore, there exist mo n 2

N� �N� such that mx h nx. By Axioms 1 and 4, we thus
have m2x h mnx h n2x. By transitivity of h, we have
m2x h n2x. Hence, mkx h nkx for all k 2 N�. Because
limk ! þ1ð

m
n
Þ
k
¼ 0, we obtain rx;x ¼ 0. Hence, Px;x ¼+

which contradicts Axiom 5. Choose an element a 2 A and
let j : A ! R�þ be the function defined by jðxÞ ¼ ra;x.
Clearly, we have jðmxÞ ¼ mjðxÞ. Let us prove that x �

y3jðxÞ4jðyÞ. From the equality Px;x ¼ Px;a Qa;aPa;x,
we obtain sx;x ¼ sx;ara;asa;x, that is sa;x ¼ s�1x;a ¼ ra;x. Hence
sx;y ¼ sx;ara;asa;y ¼ r�1a;xra;y. Since x � y3 sx;y o 1, we have
x � y3jðxÞ4jðyÞ.

Now let c : A ! R�þ be another function verifying (i).
Let l : A ! R�þ be the function defined by
lðxÞ ¼ jðxÞ�1cðxÞ. Suppose there exist two elements x; y 2
A such that lðxÞalðyÞ. By symmetry, we can assume
lðxÞ4 lðyÞ. Let a ¼ lðyÞlðxÞ�1o 1. Then by density, there
exists a q 2 Q�þ such that ajðyÞjðxÞ�1o qojðyÞjðxÞ�1. In
other words, we have cðyÞo qcðxÞ and qjðxÞojðyÞ,
which is impossible. Hence, l is a constant map. &

Let � be an Archimedean homothetic weak order on a
N�-set A. We chose a function verifying condition (i) of
Theorem 1 and we say that j represents �.

For x 2 A, we note jx the isocontour containing x,
defined by jx ¼ fy 2 A : jðyÞ ¼ jðxÞg. Note that jx does
not depend on j.

We now illustrate this ratio-scale measurement with
three equally spaced isocontours. In this illustration, like in
all other examples in this paper, our basic structure is a
two-dimensional space. It can be interpreted as stimuli
composed of two attributes or bundles of goods that
consists in objects made of a quantity x1 of good X 1 and x2

of good X 2. In order to ease the graphical and numerical
illustrations, which may feature non integer values, we
consider real-valued quantities of goods. Formally, A is
the set fðx1X 1; x2X 2Þ : x1;x2 2 R�þg endowed with the
structure of R�þ-set given by the map R�þ � A ! A;
ðl; ðx1X 1;x2X 2ÞÞ 7! ðlx1X 1; lx2X 2Þ.
Example 1. Consider the function x ¼ ðx1X 1; x2X 2Þ 7!

jðxÞ ¼ x
1=2
1 x

1=2
2 and define � by x � y3jðxÞ4jðyÞ for

all x; y 2 A. With the quantity x1 in abscissae and the
quantity x2 as ordinate, Fig. 4 plots three equally spaced
isocontours j5¼fx : jðxÞ ¼ 5g;j10¼fx : jðxÞ ¼ 10g;j15 ¼

fx : jðxÞ ¼ 15g. In this manner, there is as much difference
between the values of objects belonging to j5 and j10 than
between the values of objects belonging to j10 and j15

(preservation of differences). Moreover, the value of objects
belonging to j10 is twice the value of objects belonging to j5

(valuation of ratios). We illustrate this with the objects
a 2 j5; 2a 2 j10, and 3a 2 j15.

4. Homothetic interval orders, biased representation

Suppose now the binary relation � is an interval order.
Then, indifference is no more transitive, for instance
because of a lack of discrimination in the measurement
process. We show that we can still prove the existence of a
ratio-scale for the measurement of objects. Moreover, we
can characterize the bias, or distortion factor, that induces
the binary relation to depart from the underlying weak
order. This bias appears as a function of each object, that is
positive and smaller or equal to 1, and that is uniquely
characterized by the underlying homothetic interval order.
Because of the intransitivity of indifference, isocontours

show a sort of ‘‘thickness’’ and objects may be indifferent
without having the same measure. We give a precise
characterization of the indifference set containing a given
object, making precise the idea that two objects having the
same measure may have different indifference sets because
they differ qualitatively by their biasing function. Also, we
propose a measure of the threshold of indifference for a
given object by introducing and illustrating the notions of
upper and lower indifference thresholds. We illustrate these
notions with a two-dimensional space.

Theorem 2. Let A be a non-empty N�-set endowed with an

Archimedean binary relation �. The two following conditions
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are equivalent ðx; y 2 A;m 2 N�Þ:
(i)
 there exist two functions j : A ! R�þ and g : A !

�0; 1� such that 8ðx; y;mÞ we have

x � y 3 gðxÞgðyÞjðxÞ4jðyÞ;

jðmxÞ ¼ mjðxÞ;

gðmxÞ ¼ gðxÞ:

8><
>:
(ii)
 The relation � is a homothetic interval order.
35

30

25

20

15

10

5

0
0 5 10 15 20 25 30 35

Ib

δb
+b

δb
-b

δa
-a

δa
+a

b

�15

a

Ia

Fig. 5. Two indifference sets of a homothetic interval order.
Moreover, if � is a homothetic interval order, the pair ðj; gÞ
of (i) is unique up to multiplication of j by a positive number.

Proof. The implication ðiÞ ) ðiiÞ is easy to verify. Suppose
� is a homothetic interval order. Using Lemma 1, we have
x � y3 sx;y o 1 (and also x � y3 ry;x 4 1). Let � 0 be
the binary relation on A defined by x� 0 y3 sy;x 4 sx;y; i.e.
by x� 0 y3Px;y+! Py;x. Since sy;mx ¼ msy;x and smx;y ¼

m�1sx;y; � 0 is Archimedean. We now prove that � 0 is a
homothetic weak order. Let � 0 be the indifference relation
associated with � 0. Thus we have x � 0 y3 sx;y ¼ sy;x 3
Px;y ¼ Py;x. By usingthe equalities sx;z ¼ sx;yry;ysy;z and
sz;x ¼ sz;yry;ysy;x, we obtain the transitivity of � 0: if x � 0 y

and y � 0 z, then x � 0 z. Hence � 0 is negatively transitive;
in particular, it is a weak order. For all x; y 2 A and all
m; n 2 N�, we have Pmx;ny ¼

n
m
Px;y, and therefore smx;ny ¼

n
m

sx;y. We then easily deduce that � 0 satisfies Axioms 1, 3
and 4. It remains to verify that � 0 satisfies Axiom 2. Let
x; y 2 A such that x� 0 y. Since sx;y ¼ sx;zrz;zsz;y and
sy;x ¼ sy;zrz;zsz;x, we have sx;zsz;y o sy;zsz;x. Hence there exist
p;m; n 2 N� with m4 n such that ðm

p
Þ
2 sx;z

sz;x
o 1o ðn

p
Þ
2 sy;z

sz;y
and

pn�1
� �2

sz;y o sy;z. Then we have spx;mz o smz;px and snz;py o
spy;nz, i.e. px� 0 mz h0 nz� 0 py. We have thus proven that
� 0 is a homothetic weak order.

By Theorem 1, we can choose a function j : A ! R�þ
such that jðmxÞ ¼ mjðxÞ and x� 0 y3jðxÞ4jðyÞ. Let
sðx; yÞ : A� A ! R�þ be the function defined by sðx; yÞ ¼
ry;xjðxÞ

�1jðyÞ. Since x � y3 ry;x 4 1, by construction we
have x � y3sðx; yÞjðxÞ4jðyÞ. And returning to the
definition of � 0, we obtain

jðxÞ4jðyÞ 3 sðx; yÞ1=2jðxÞ4sðy; xÞ1=2jðyÞ.

This implies sðx; yÞ ¼ sðy;xÞ. For x; y; x0; y0 2 A, we have
ry;x ¼ ry0;xsy0;y0ry;y0 , hence ry;xry0 ;x0 ¼ ry0;xðry0 ;x0sy0;y0ry;y0 Þ ¼

ry0 ;xry;x0 . Hence, we have sðx; yÞsðx0; y0Þ ¼ sðx; y0Þsðx0; yÞ.

Therefore, we have sðx; yÞ ¼ gðxÞgðyÞ with gðxÞ ¼ sðx;xÞ1=2.
Since sðmx;m0yÞ ¼ sðx; yÞ, we have gðmxÞ ¼ gðxÞ. The
uniqueness of j up to multiplication by a positive number
(Theorem 1) implies the uniqueness of g. &

Let � be an Archimedean homothetic interval order on a
N�-set A. We chose a pair ðj; gÞ verifying condition (i) of
Theorem 2 and we say that ðj; gÞ represents �. When g ¼ 1
(i.e. the constant function x 7!1), we recover Theorem 1:
indifference is transitive and � is a weak order.

For x 2 A, we note Ix the indifference set containing x,
defined by Ix ¼ fy 2 A : y � xg. Note that Ix does not
depend on j. And because of the symmetry of � (i.e.
x � y3 y � x), we have y 2 Ix 3x 2 Iy. Moreover, if �
is a weak order (i.e. if g ¼ 1), then Ix coincides with the
isocontour jx ¼ fy 2 A : jðyÞ ¼ jðxÞg. When indifference
is not transitive, indifference sets show a threshold of
indifference. We have

y 2 Ix 3 gðxÞgðyÞjðxÞpjðyÞp gðxÞ�1gðyÞ�1jðxÞ.

This can also be written

x � y 3 jðxÞ ¼ jðyÞ�CgðxÞgðyÞ.

Therefore, two objects with the same measure may have
different indifference sets. For x 2 A, we note Ix the subset of
Q�þ defined by Ix ¼ f

m
n
: mx � nxg. Because of the symmetry

of �, we have I�1x ¼ Ix. Let Īx denote the closure of Ix in R

for the usual topology. We deduce from Theorem 2 that Īx

coincides with the closed interval ½gðxÞ2 : gðxÞ�2�. We let dþx ¼
g�2ðxÞ and d�x ¼ ðd

þ
x Þ
�1. Thus, we have Īx ¼ ½d

�
x ; d
þ
x �. We

propose to call dþx the upper indifference threshold at x, and d�x
the lower indifference threshold at x. We illustrate these
concepts in the following example.

Example 2. Consider the ratio-scale x ¼ ðx1X 1; x2X 2Þ 7!

jðxÞ ¼ x
1=2
1 x

1=2
2 and consider a factor gðxÞ ¼ lx1þmx2

x1þx2
with

l;mp1 that biases bundle x depending on the relative
quantities of objects X 1 and X 2. The binary relation �
defined by x � y3 gðxÞjðxÞ4 gðyÞ�1jðyÞ for all x; y 2 A is
a homothetic interval order. Letting l ¼ 0:95 and m ¼ 0:80,
Fig. 5 shows object a ¼ ð25X 1; 9X 2Þ and b ¼ ð9X 1; 25X 2Þ

with jðaÞ ¼ jðbÞ ¼ 15. Their identical isocontour j15

appears in bold line and their distinct indifference sets Ia

and Ib are delimited by the plain and dotted lines,
respectively. Note that since gðaÞ4 gðbÞ, we have Ia 	 Ib.
We also show the lower and upper indifference thresholds
of objects a and b. Since A is a R�þ-set; for x 2 A, dþx
coincides with the supfl 2 R�þ : lx � xg, and d�x coincides
with the inffl 2 R�þ : lx � xg. Numerically, we have
d�a ¼ 0:83 which corresponds to a decrease of 17% and
dþa ¼ 1:42 which corresponds to an increase of 21%. Also,
d�b ¼ 0:71 ð�29%Þ and dþb ¼ 1:42 ðþ42%Þ.
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5. Homothetic interval orders, tight representation with two

functions

In this section, we rejoin the classical representation of
an interval order � that consists in finding two real-valued
functions j1 and j2, with j1pj2, such that x � y3
j1ðxÞ4j2ðyÞ. For a given homothetic interval order �, we
construct such a canonical two-function representation
ðj1;j2Þ directly from two weak orders associated with �
and where both j1 and j2 are ratio-scales. This ensures
that the pair ðj1;j2Þ is unique up to multiplication by a
positive number.

Let A be a non-empty set N�-set endowed with an
Archimedean homothetic interval order �. We define the
following three binary relations:


 x� 0 y3jðxÞ4jðyÞ for one (i.e. for any) pair ðj; gÞ
verifying condition (i) of Theorem 2,



 x�1 y3ðmx � z and z h my, for some ðz;mÞ 2 A�N�Þ,



 x�2 y3 ðmxh z and z � my, for some ðz;mÞ 2 A�N�Þ.

Note that x � y) ðx�1 y and x�2 yÞ. Hence, since � is
strongly non-empty, so is �iði ¼ 1; 2Þ. The relation � 0 is
clearly a homothetic weak order. The following corollary
shows the same is true for both �1 and �2.

Corollary 1. Let A be a non-empty N�-set endowed with an

Archimedean homothetic interval order �. Then for i ¼

1; 2;�i is a homothetic weak order.

Proof. Since � is an Archimedean homothetic interval
order, let ðj; gÞ be a pair representing � (Theorem 2).
Choose an element a 2 A. Let x; y 2 A such that x�1 y ,
and let ðz;mÞ 2 A�N� such that mx � z and z h my.
We have gðxÞgðzÞjðmxÞ4jðzÞ and jðzÞXgðxÞgðyÞjðmyÞ.
Therefore, we have

rz;x
jðzÞ
jðxÞ

jðmxÞ4jðzÞXrz;y
jðzÞ
jðyÞ

jðmyÞ,

hence rz;x 4 rz;y. Moreover, we have rz;x ¼ rz;asa;ara;x and
rz;y ¼ rz;asa;ara;y. Therefore, we have ra;x 4 ra;y.

Conversely, let x; y 2 A such that ra;x 4 ra;y. Then, there
exist m; n 2 N� such that ra;x 4 n

m
Xra;y. Since

1
n

ra;x ¼ rna;x,
we have mrna;x 4 1Xmrna;y, i.e. gðxÞgðaÞjðmxÞ4jðnaÞ and
jðnaÞXgðyÞgðaÞjðmyÞ. Thus, we have mx � na and na h

my, i.e. x�1 y . Therefore, we have proven that the
function j1 : A ! R�þ such that j1ðxÞ ¼ ra;x represents
�1. Since we clearly have j1ðmxÞ ¼ mj1ðxÞ, �1 is a
homothetic weak order.

Let x; y 2 A such that x�2 y, and let ðz;mÞ 2 A�N�

such that mx � z and z h my. We have jðmxÞXgðxÞ
gðzÞjðzÞ and gðxÞgðyÞjðzÞ4jðmyÞ. Therefore, we have
gðxÞ�1gðzÞ�1jðmxÞXjðzÞ4 gðxÞ�1gðzÞ�1jðmyÞ. Hence, we
obtain sa;x 4 sa;y. As for �1, we show conversely that, for
all x; y 2 A such that sa;x 4 sa;y, we have x�2 y. Therefore,
the function j2 : A ! R�þ such that j2ðxÞ ¼ sa;x repre-
sents �2 and �2 is a homothetic weak order. &
We can now prove the following theorem:

Theorem 3. Let A be a non-empty N�-set endowed with an

Archimedean binary relation �. The two following conditions

aree equivalent ðx; y 2 A;m 2 N�Þ:
(i)
 There exist two functions j1;j2 : A ! R�þ such that

j1pj2 and 8ðx; y;mÞ we have

x � y 3 j1ðxÞ4j2ðyÞ;

j1ðmxÞ ¼ mj1ðxÞ;

j2ðmxÞ ¼ mj2ðxÞ:

8><
>:
(ii)
 The relation � is a homothetic interval order.
Moreover, if � is a homothetic interval order, the pair

ðj1;j2Þ of (i) is unique up to multiplication of j1 and j2 by a

positive number (i.e., up to replacing it by ðlj1; lj2Þ for a

l4 0); for i ¼ 1; 2, the function ji represents �i; and the

pair ðj; gÞ ¼ ððj1j2Þ
1=2; ðj1

j2
Þ
1=2
Þ verifies the condition (i) of

Theorem 2.

Proof. The implication ðiÞ ) ðiiÞ is easy to verify. Suppose
� is a homothetic interval order. Choose an element a 2 A

and let j1;j2 : A ! R�þ be the functions defined by
j1ðxÞ ¼ sa;ara;x and j2ðxÞ ¼ sa;x. For i ¼ 1; 2, we clearly
have jiðmxÞ ¼ mjiðxÞ. For all x; y 2 A, we have

x � y 3 ry;x 4 1

3 ry;asa;ara;x 4 1

3 sa;ara;x 4 sa;y

3 j1ðxÞ4j2ðyÞ.

From Corollary 1, we already know that, for i ¼ 1; 2, ji

represents �i. Moreover, for all x; y 2 A, we have

sy;x 4 sx;y 3 sy;ara;asa;x 4 sx;ara;asa;y

3 ra;xsa;x 4 ra;ysa;y

3 ðj1j2ÞðxÞ4 ðj1j2ÞðyÞ.

Hence, ðj1j2Þ represents � 0. Therefore, j ¼ ðj1j2Þ
1=2

represents � 0. Clearly, we have jðmxÞ ¼ mjðxÞ. And from
the proof of Theorem 2, we have gðxÞ2 ¼ rx;x ¼ ð

j1

j2
ÞðxÞ.

To show the uniqueness property, take ðj1; j2Þ and
ðj01; j

0
2Þ two pairs of functions verifying condition (i) of

Theorem 3. For i ¼ 1; 2, let li : A ! R�þ be the function

defined by liðxÞ ¼
j0iðxÞ
jiðxÞ

. Take x; y 2 A and let a ¼ l1ðxÞ
l2ðxÞ
2 R�þ.

If a4 1, then there exists q 2 Q�þ such that qp j2ðyÞ
j1ðxÞ

o aq.

Let us write q ¼ m
n

with m; n 2 N�. We then have

j1ðmxÞpj2ðnyÞ and j01ðmxÞ4j02ðnyÞ, contradiction. If

ao 1, then there exists q0 2 Q�þsuch that aq0o j2ðyÞ
j1ðxÞ

pq0.

Write q0 ¼ m0

n0
with m0; n0 2 N�. We then have

j01ðm
0xÞpj02ðn

0yÞ and j1ðm
0xÞ4j2ðn

0yÞ, contradiction.

Hence, a ¼ 1. Since this is true for any x; y 2 A, there
exists a constant l 2 R�þ such that l ¼ l1 ¼ l2. &
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Let � be an Archimedean homothetic interval order on a
N�-set A. We choose two functions ðj1;j2Þ verifying
condition (i) of Theorem 3 and we say that ðj1;j2Þ

represents �. We put ðj; gÞ ¼ ððj1j2Þ
1=2; ðj1

j2
Þ
1=2
Þ.

For x 2 A, we note Jx the set fy : j1ðxÞpjðyÞpj2ðxÞg,
and we propose to call it the tight indifference set containing

x. Because of the uniqueness property of Theorem 2, Jx

does not depend on the choice of the pair ðj1;j2Þ.
For x 2 A, we have the inclusion (in general strict)

Jx 	 Ix. By construction, if y; z 2 Jx, then y � z; a
property that is not verified by indifference sets. Note also
that we may have y 2 Jx but xeJy. More precisely, for
x; y 2 A, we have x � y if and only if Jx \ Jya;, i.e. if and
only if the intersection of the two closed intervals jðJxÞ and
jðJyÞ is non-empty.

Let � be the binary relation on A defined as follows:
x � y if and only if x 2 Jy and y 2 Jx. It is clearly
symmetric, and we call it the tight indifference relation
associated with �. For x 2 A, we note Jx the subset of Q�þ
defined by Jx ¼ f

m
n
: mx � nxg. We have Jx ¼ J�1x . Let J̄x

denote the closure of Jx in R for the usual topology. We
deduce from Theorem 2 (or Theorem 3) that J̄x coincide
with the closed interval ½gðxÞ; gðxÞ�1�. We put tþx ¼ gðxÞ�1

and t�x ¼ ðt
þ
x Þ
�1. Thus, we have J̄x ¼ ½t

�
x ; t
þ
x �. We call tþx

the upper tight indifference threshold at x, and t�x the lower

tight indifference threshold at x. We illustrate these concepts
in the following example.

Example 3. Consider the two functions x ¼ ðx1X 1;x2X 2Þ 7!

j1ðxÞ ¼ lx1 þ x2 and x ¼ ðx1X 1; x2X 2Þ7!j2ðxÞ ¼ mx1 þ x2

where 0o lpm and define � by x � y3j1ðxÞ4j2ðyÞ.
The relation � is a homothetic interval order and we recover
the formulation x � y3 gðxÞjðxÞ4 g�1ðyÞjðyÞ of
Theorem 2 with gðxÞ ¼ ðlx1 þ x2Þ

1=2
ðmx1 þ x2Þ

�1=2 and
jðx1X 1; x2X 2Þ ¼ ðlx1 þ x2Þ

1=2
ðmx1 þ x2Þ

1=2. Letting l ¼ 5
14

and m ¼ 6
7
, Fig. 6 shows object a ¼ ð14; 4Þ of measure jðaÞ ¼

12 and its isocontour j12 ¼ fx : jðxÞ ¼ 12g in bold line. In
plain lines appears the tight indifference set Ja and in dotted
lines appears the indifference set Ia. We also depict thelower
and upper indifference and tight indifference thresholds of
object a. Since A is a R�þ-set; for x 2 A, tþx coincides with the
supfl 2 R�þ : lx � xg, and t�x coincides with the
inffl 2 R�þ : lx � xg. Numerically, we have d�a ¼

9
16

and
dþa ¼

16
9
. Also, t�a ¼

3
4
and tþa ¼

4
3
.

The notions of indifference sets and tight indifference set
that we introduced suggest that a series of progressively
tighter and tighter indifference relations can be constructed
until we eventually reach the equivalence relation among
objects with identical measure. It is indeed the case and we
now formalize this intuition.

For a homothetic interval order � represented by a pair
ðj; gÞ (Theorem 2) and for k 2 N�, we define the homo-
thetic interval order �k by the pair ðj; g1=kÞ and note �k its
associated indifference relation. We have �1 ¼ � and �k 	

�kþ1 (i.e. �kþ1 is thinner than �k): x�ky) x�kþ1y. If x

�k y, we say that x and y are k-indifferent.
Theorem 4. Let A be a non-empty N�-set endowed with an

Archimedean homothetic interval order �. Then for x; y 2 A

such that x � y, either there exists k 2 N� such that x �k y

and xfkþ1y, or x and y have the same measure (i.e. y 2 jx).

Proof. If � is a weak order, then there is nothing to prove:
x � y3 y 2 jx, and �k ¼� for all k 2 N�.So we can
suppose that � is not a weak order. For x 2 A and k 2 N�,
we note Ik

x the k-indifference set containing x (Cf. Section
4). Since �k 	 �kþ1, we have Ikþ1

x 	 Ik
x. Moreover, we

have jx 	 Ik
x for all k 2 N�, and since g1=k tends to the

constant function x 7!1 when k tends to þ1, we have
\kIk

x ¼ jx. So if x � y, either y 2 jx, either there exists
k 2 N� such that y 2 Ik

xnI
kþ1
x . &

6. Homothetic semiorders

In this section, we show that the biasing function is
constant whenever the binary relation � is a semiorder. In
this manner, the representation of homothetic semiorders
� involves a ratio-scale and a constant multiplicative
factor. First, we introduce the main result for homothetic
semiorders:

Theorem 5. Let A be a non-empty N�-set endowed with an

Archimedean binary relation �. The three following condi-

tions are equivalent ðx; y 2 A;m 2 N�Þ:
(i)
 There exists a function j : A ! R�þ and a number a 2�
0; 1� such that 8ðx; y;mÞ we have

x � y 3 ajðxÞ4jðyÞ;

jðmxÞ ¼ mjðxÞ:

(

(ii)
 The relation � is a homothetic interval order such that

�1 ¼ �2 (in this case, we have � 0 ¼ �1 ¼ �2).

(iii)
 The relation � is a homothetic semiorder.
Moreover, if � is a homothetic semiorder, then the pair ðj; aÞ
of (i) is unique up to multiplication of j by a positive number.
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Proof. The implications ðiÞ ) ðiiiÞ and ðiÞ ) ðiiÞ are easy to
verify.

Let us first show the implication ðiiiÞ ) ðiÞ. Suppose that
� is a homothetic semiorder. By Theorem 3, we can choose
j1 and j2 such that x � y3j1ðxÞ4j2ðyÞ. We want to
show that there exists l4 0 such that j2 ¼ lj1. Suppose

that there exist y; t 2 A such that j2ðyÞ
j1ðyÞ

a j2ðtÞ
j1ðtÞ

and take

x; z 2 A. Without loss of generality, we can suppose that
j2ðyÞ
j1ðyÞ

o j2ðtÞ
j1ðtÞ

. Hence, we have j2ðyÞ
j2ðtÞ

o j1ðyÞ
j1ðtÞ

. Up to replacing

ðy; tÞ by ðmy; ntÞ for some m; n 2 N�, we can suppose that
j2ðyÞ
j2ðtÞ

o 1o j1ðyÞ
j1ðtÞ

.Hence, there exist q; q0 2 Q�þ such that

j2ðyÞo qj1ðxÞpj2ðtÞ;

j1ðtÞpq0j2ðzÞoj1ðyÞ:

(

Let us write q ¼ a
p
and q0 ¼ b

p
with a; b; p 2 N�. Then, we

have

j2ðpyÞoj1ðaxÞpj2ðptÞ;

j1ðptÞpj2ðbzÞoj1ðpyÞ:

(

Therefore, we have

ax � py and py � bz;

ax - pt and pt - bz;

(

which contradicts that � is a semiorder. We hence have
proven the implication ðiiiÞ ) ðiÞ.

To show the implication ðiiÞ ) ðiÞ, suppose � is a
homothetic interval order such that �1 ¼ �2. Choose an
element a 2 A. Then, from Corollary 1 and the uniqueness
property of Theorem 1, there exists a unique constant
b4 0 such that ra;x ¼ bsa;x. By Corollary 1 and Theorem 3,
this implies that � 0 ¼ �1 ¼ �2 and the function g of
Theorem 2 condition (i) is constant on A. &

Let � be an Archimedean homothetic semiorder. We
choose a pair ðj; aÞ verifying condition (i) of Theorem 4.
Then we have

y 2 Ix 3 ajðxÞpjðyÞp a�1jðxÞ.

This can also be written

x � y 3 jðxÞ ¼ jðyÞ�Ca.

Hence, the upper and lower indifference thresholds do
not depend on x: for all x 2 A, we have dþx ¼ dþ ¼ a�1 and
d�x ¼ d� ¼ a. This is illustrated in the following example.

Example 4. Consider the function x ¼ ðx1X 1;x2X 2Þ 7!

jðxÞ ¼ x
2=5
1 x

3=5
2 and define � by x � y3 ajðxÞ4jðyÞ

for all x; y 2 A. Letting a ¼ 0:9, Fig. 7 shows the
isocontours j10 ¼ fx : jðxÞ ¼ 10g with a; b 2 j10 and
j20 ¼ fx : jðxÞ ¼ 20g with a0; b0 2 j20 in bold lines. We
depict the corresponding indifference sets I10 and I20 in
plain lines. We have dþ ¼ 10

9
and d� ¼ 9

10
.

Theorem 5 hence provides for a general formulation of
Weber’s law, which contends that the ‘‘just noticeable
difference’’ maintains a constant ratio with respect to the
intensity of the comparison stimulus. A constant multi-
plicative threshold of indifference (such as a in Theorem 5)
is thus axiomatically derived from a semiorder. Since
semiorders are traditionally interpreted as reflecting a
constant additive threshold of indifference (see Pirlot &
Vincke, 1997 for recent applications), we want now to
discuss this issue in more details.
There is clearly a relation between a constant propor-

tional threshold and a constant additive threshold. We can
indeed reformulate the biased representation of Theorem 5
as a representation with a constant additive threshold by
taking any logarithmic transformation of the representing
function. For instance, if ðj; aÞ represents a homothetic
semiorder �, then we have x � y3cðxÞ4cðyÞ þ � and
cðmxÞ ¼ cðxÞ þ logðmÞ, where cðxÞ ¼ logðjðxÞÞ and � ¼
� logðaÞ4 0. In this manner, we have constructed a
‘‘derived scale’’ c such that jðxÞ4jðyÞ3cðxÞ4cðyÞ.
This scale c allows the reformulation of the indifference
relation as
x�y 3 cðxÞ ¼ cðyÞ � �

with �4 0, which typically reflects error in measurement.
In terms of uniqueness, this formulation can be

compared to the seminal result of Scott and Suppes
(1958) who prove the existence of a function c over a
finite set A such that x � y3cðxÞ4cðyÞ þ 1. Their result
cannot specify any uniqueness condition for the function c
and thus, a fortiori, for the threshold of indifference.
Hence, the function c cannot be interpreted as a
measurement of the objects or stimuli and the additive
threshold ‘‘1’’ does not meaningfully ‘‘measure’’ the
interval between the value of objects (this ‘‘1’’ value is
obtained by using the finiteness of A and could be replaced
by any other value). To our knowledge, the same problem
arises from other representations of finite semiorders (see
the references given in introduction). With our theory of
biased extensive measurement, both the objects and the
threshold can be quantitatively measured. More precisely,
the derived scale c is a difference-scale and the pair ðc; �Þ
verifying x � y3cðxÞ4cðyÞ þ � and cðmxÞ ¼ cðxÞþ
logðmÞ is unique up to the replacement of c by c0 ¼ cþ m.
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In terms of meaningfulness, the additive formulation
(x�y3cðxÞ ¼ cðyÞ � � with c being a difference-scale)
shows both similar and distinct properties when compared
to the multiplicative formulation (x � y3jðxÞ ¼ jðyÞ�Ca
with j being a ratio-scale). Both ratio-scales and differ-
ence-scales allow meaningful comparisons of ratios and of

differences (i.e. statements such as f ðxÞ
f ðyÞ

X
f ðx0Þ
f ðy0Þ

or f ðxÞ �

f ðyÞXf ðx0Þ � f ðy0Þ are meaningful for f being a ratio-scale
or a difference-scale). On the other hand, difference-scales
allow meaningful numerical statements about the length of
differences but not about the value of ratios, while ratio-
scales allow meaningful statements about the value of
ratios but not about the length of differences (i.e.
statements such as ‘‘cðxÞ � cðyÞ ¼ 2’’ are meaningful for
a difference scale but not for a ratio-scale, and statements
such as ‘‘jðxÞ ¼ 2jðyÞ’’ are meaningful for a ratio-scale but
not for a difference-scale). Finally, the expression jðmxÞ ¼

mjðxÞ in the multiplicative formulation becomes cðmxÞ ¼

cðxÞ þ logðmÞ in the additive formulation, which is not an
algebraic property of the structure and seems to have little
empirical meaning. In conclusion, the multiplicative for-
mulation seems more ‘‘primitive’’ than the (derived)
additive formulation but this may be a mere consequence
of our axiomatization that builds on the property of
homotheticity. Certainly, an axiomatization of an additive
threshold of indifference such as x� y3jðxÞ ¼ jðyÞ � �,
with j being a ratio-scale, would clarify this issue, and we
are not aware of such a result (for a discussion of
themeaningfulness of the different types of statements
related to uniqueness issues and to derived measurement,
see Roberts, 1979, Sections 2.2, 2.3, 2.4, 2.5 and 6.1).
7. Homothetic semiorders with additive representation

Up to now, we have relied on a mere replication
operation among objects to measure them with ratio-
scales. When a concatenation operation among objects is
available, it is natural to ask for the conditions under which
we can construct a ratio-scale that is compatible with this
operation, i.e. that verifies jðx � yÞ ¼ jðxÞ þ jðyÞ. When
this is the case, the measurement of an object formed by the
concatenation of two objects is simply the sum of the
measure for each object. In the presence of intransitive
indifference, this does not mean that the independence
condition must be verified. In the representation that we
propose in this section, we show that a weaker condition is
necessary and we term this condition pseudo-indepen-
dence. We then show that semiorders that are pseudo-
independent can be represented by an additive ratio-scale
and a constant factor.

First, we need to introduce the structure of a commu-

tative semigroup, that is a non-empty set A endowed with a
map A� A ! A; ðx; yÞ 7!x � y such that for all
x; y; z 2 A, we have x � ðy � zÞ ¼ ðx � yÞ � z (associativity)
and x � y ¼ y � x (commutativity). Note that a commu-
tative semigroup A is also a N�-set for the operation of N�
defined by N� � A ! A; ðm;xÞ 7!mx ¼ x � � � � � x (m
times). A real-valued function on a commutative semi-
group A is then called additive if and only if, for all
x; y 2 A, jðx � yÞ ¼ jðxÞ þ jðyÞ. Now, consider the follow-
ing properties for a binary relation � on A:

Independence: 8ðx; y; z 2 AÞ we have x � y3x � z�y � z;
Pseudo-independence: 8ðx; y; z; t 2 AÞ we have

ðx � y; z � tÞ ) x � z � y � t;

ðx h y; z h tÞ ) x � z h y � t:

(

When the relation � is not a weak order, pseudo-
independence is weaker than independence. For instance,
the relation � of Example 3 is pseudo-independent.
However, it is independent if and only if l ¼ m. In this
special case, the ratio-scale j is additive. Note also that the
relations � of Examples 1, 2 and 4 are not independent nor
pseudo-independent. We now prove the following theorem.

Theorem 6. Let A be a commutative semigroup endowed

with an Archimedean homothetic interval order �. The three

following conditions are equivalent:
(i)
 There exists a function j : A ! R�þ and a number a 2
�0; 1� such that 8ðx; y 2 AÞ we have

x � y 3 ajðxÞ4jðyÞ;

jðx � yÞ ¼ jðxÞ þ jðyÞ:

(

(ii)
 The relation � 0 is independent.
(iii)
 The relation � is a pseudo-independent homothetic

semiorder.
Proof. The implication ðiÞ ) ðiiiÞ is easy to verify and left
to the reader.
We first prove ðiiiÞ ) ðiiÞ. Choose an element a 2 A, and

let j : A ! R�þ be the function defined by jðxÞ ¼ ra;x.
From Theorem 5, j represents � 0 (as well as �1 and �2Þ.
Let x; y 2 A. if m; n;m0; n0 2 N� satisfy ma h nx and
m0a h n0y then, since � is pseudo-independent, we have
ðnm0 þ n0mÞa h nn0ðx � yÞ. Therefore, we have ra;x�yp
m
n
þ m0

n0
. Hence, we have ra;x�ypra;x þ ra;y, i.e. jðx � yÞp

jðxÞ þ jðyÞ. In a similar manner, let x; y 2 A. if
m; n;m0; n0 2 N� satisfy mx � na and m0y � n0a then
nm0ðx � yÞ � ðm0nþmn0Þa. Hence, we have sx�y;ap mm0

m0nþmn0
.

Therefore, sx�y;apðnmþ
n0

m0
Þ
�1, i.e. ra;x�yXra;x þ ra;y. We

therefore have jðx � yÞ ¼ jðxÞ þ jðyÞ and the implication
ðiiiÞ ) ðiiÞ is proven.
To prove the implication ðiiÞ ) ðiÞ, suppose that the

relation � 0 is independent. Let a 2 A. For x; y; z 2 A,
we have x � z�1y � z 3 ra;x�z 4 ra;y�z. We can replace a by
a � z 2 A and we obtain

x � z�1y � z3 ra�z;x�z 4 ra�z;y�z 3 ra;x 4 ra;y 3x�1 y .

Therefore, �1 is independent. In the same way, we prove
that �2 is independent. Let j0;j1;j2 : A ! R�þ be the
functions defined by j1ðxÞ ¼ sa;ara;x, j1ðxÞ ¼ sa;x and
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j0ðxÞ ¼ ðj1j2Þ
1=2. From Theorem 3, for i ¼ 1; 2, ji

represents �i, which are independent. Hence, for x; y 2 A,
we have

j0ðx � yÞ2 ¼ j0ðxÞ
2
þ j0ðyÞ

2
þ j1ðxÞj2ðyÞ þ j1ðyÞj2ðxÞ

¼ ½j0ðxÞ þ j0ðyÞ�
2 þ ð½j1ðxÞj2ðyÞ�

1=2

� ½j1ðyÞj2ðxÞ�
1=2Þ

2

from which we deduce that ½j1ðxÞj2ðyÞ�
1=2 ¼ ½j1ðyÞ

j2ðxÞ�
1=2, i.e. that j2 ¼ lj1 for some l4 0. Therefore, �

is a semiorder and the implication ðiiÞ ) ðiÞ is verified. &

We illustrate this result with a two-dimensional space
A ¼ R�þX 1 � R�þX 2 endowed with the operation � defined
by ðx1X 1;x2X 2Þ � ðx

0
1X 1;x02X 2Þ ¼ ððx1 þ x01ÞX 1; ðx2 þ

x02ÞX 2Þ with x1;x2 2 R�þ.

Example 5. Consider the function x ¼ ðx1X 1;x2X 2Þ 7!

jðxÞ ¼ lx1 þ mx2 and define � by x � y3 ajðxÞ4jðyÞ
for all x; y 2 A. Letting a ¼ 0:8, l ¼ 0:7 and m ¼ 0:9, Fig. 8
shows the isocontours j20 ¼ fx : jðxÞ ¼ 20g in bold, with
the corresponding indifference set I20 delimited by dotted
straight lines.

8. Concluding remarks

With theories of biased extensive measurement, we
extend extensive measurement to phenomena where the
measurement process is distorted or biased, leading to a
lack of discrimination and a lack of consistency. We show
that a fully quantitative measurement of objects is possible
even if transitivity of indifference and independence are
violated. Moreover, we characterize the extent to which the
measurement process is distorted with a biasing function.
Such a bias is unique and does not depend on the quantity
of objects or intensity of the stimuli. We build on this
biasing function to propose new concepts that allow for the
precise measurement of thresholds of indifference. In this
manner, biased extensive measurement combines the
measurement of objects with the measurement of the
measuring process.
Our approach suggests to extend ratio-scale measure-
ment and extensive measurement to a broader class of
phenomena, in particular in psychological sciences. The
observation of insensitivity and/or inconsistency shall not
necessarily be interpreted as a nuisance for the measure-
ment of objects or stimuli but as a source of information
about the underlying process, for instance the psychologi-
cal processes. For example, this should be relevant for the
mathematical foundations of preferences, where the
reduction of preferences to a measure of each object (its
‘‘utility’’) has proven to be empirically suspicious (see, e.g.,
Slovic, 1995). Indeed, the biasing function could help to
explain the part of preferences that lies beyond the value of
each object. The analogy with the biased balance suggests
that this part of preferences resides in the subject who is
acting as a measuring device.
Finally, we would like to note that, in the case of

homogeneous sets, we have been able to considerably
extend the results of biased extensive measurement to any
binary relation that is positive and homothetic (Axioms 1
and 4 above). Values greater than 1 are then possible for
the biasing function which, in the homogeneous case,
remains constant and unique (see Le Menestrel & Lemaire,
2006). We are working on generalizing these results to the
non-homogeneous case.
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